

    
      
          
            
  


lrl: Learn Reinforcement Learning

lrl is a Python package for applying (and hopefully, learning!) basic Reinforcement Learning algorithms.  It is intended to be an early stepping stone for someone trying to understanding the basic concepts of planning and learning, providing out-of-the-box implementations of some simple environments and algorithms in a well documented, readable, and digestible way to give someone platform from which to build understanding.

Within minutes, you’ll be able to make fun images of your agent exploring an environment like these!

[image: pic1] [image: pic2]

The source code was written by Andrew Scribner and is available on GitHub [https://github.com/ca-scribner/lrl].
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General


Overview

lrl is a Python package for applying (and hopefully, learning!) basic Reinforcement Learning algorithms.  It is intended to be an early stepping stone for someone trying to understanding the basic concepts of planning and learning, providing out-of-the-box implementations of some simple environments and algorithms in a well documented, readable, and digestible way to give someone platform from which to build understanding.

The overall goal of the author in writing this package was to provide people interested in Reinforcement Learning a starting point and handrail to help them as they began learning.  The fastest, most efficient implementation is less important here than code which can be read and learned from by someone new to the topic and with intermediate Python skills.

The source code was written by Andrew Scribner and is available on GitHub [https://github.com/ca-scribner/lrl].




Content

Implemented here are two common planning algorithms and one common learning algorithm:


	Value Iteration


	Policy Iteration


	Q-Learning




All three are implemented with a common API so that they can easily be run and compared to one another.

Also provided here for solving are two gridworld environments:


	RewardingFrozenLake


	Racetrack




RewardingFrozenLake is a cautionary tale about why you shouldn’t throw a frisbee near a partially frozen lake.  The goal of the environment is to traverse a partially frozen lake from a starting position (where you are) to a goal position (where your frisbee is located) without falling through any of the holes in the ice.  The state space in this environment is integer (x, y) position and actions are movement (up, down, left, right), but as the ice surface is…well…ice, movements are not always as expected (an action moving in one direction may result in you going in a direction 90 degrees from your choice).  The implementation used here is a a slightly modified version of this [https://github.com/cmaron/CS-7641-assignments/tree/master/assignment4], which is itself a moderately modified version of this [https://github.com/openai/gym/blob/master/gym/envs/toy_text/frozen_lake.py].


[image: _images/rewardingfrozenlake_solved_example_paths.png]
Example application of an optimal solution to a RewardingFrozenLake map, where the paths obtained are from 100 episodes in the environment following the optimal solution (stochasticity causes many paths to be explored)



Racetrack is a simulation of a car driving on a track from one or more starting positions to one or more finish positions, inspired by Sutton and Barto’s Reinforcement Learning [http://www.incompleteideas.net/book/the-book.html)] (exercise 5.8) and coded by the present author.  It incorporates a more complicated state function of integer (x, y) position and velocity, with actions being vehicle acceleration.  Stochasticity is introduced through oily grid tiles, and failure through terminal grass tiles surrounding tracks.


[image: _images/racetrack_solved_example.png]
Example application of an optimal solution to a Racetrack map, where the paths obtained are from 100 episodes in the environment following the optimal solution (stochasticity causes many paths to be explored)



A non-exhaustive set of plotting scripts to display the calculated solutions to the environments is also included, as well as usage examples.  The hope is that users will apply the package as written, realize they want to dig deeper into a particular aspect or add some feature they read about in literature, and then add that to the existing codebase.


[image: _images/rewardingfrozenlake_solved_example_policy_value.png]
Example solution to RewardingFrozenLake, where numbers show the value of each location and arrows show the optimal policy






Installation Instructions

lrl is accessible using pip

`
pip install lrl
`

or, you can pull the source from GitHub [https://github.com/ca-scribner/lrl] to your working directory so you can play along at home

`
git clone https://github.com/ca-scribner/lrl.git lrl
pip install -e lrl
`




Acknowledgements and Contributions

Significance guidance and inspiration was taken from two related previous codebases (here [https://github.com/cmaron/CS-7641-assignments/tree/master/assignment4], and here [https://github.gatech.edu/mmallo3/CS7641_Project4], with apologies for access to the second link being restricted).  Although the present codebase is nearly original (with exceptions being cited directly in the codebase), the above works were instrumental in inspiring this package and in many ways this package should be seen as an incremental work off these previous projects.

Future contributions are encouraged and hoped for.  If you find a bug, build a new environment, implement a new feature, or have a great example that would help others then please contribute.  The only requirement for contributions is that they should be well commented and documented (using formatting that Sphinx will understand for the docs, etc.).







          

      

      

    

  

    
      
          
            
  


Tutorials

See the below examples, plus look at the examples directory in the package for an example of how to run many cases in batch mode (for running parameter searches, etc.) and for copies of the below examples as notebooks.



	Example Case using Racetrack
	Boilerplate

	Initialize an Environment

	Solve with Value Iteration and Interrogate Solution

	Plotting Results

	Solving with Policy Iteration and Comparing to Value Iteration

	Solve with Q-Learning





	Example Case using RewardingFrozenLake
	Boilerplate

	Initialize an Environment

	Solve with Value Iteration and Interrogate Solution

	Plotting Results

	Solving with Policy Iteration and Comparing to Value Iteration

	Solve with Q-Learning













          

      

      

    

  

    
      
          
            
  


Example Case using Racetrack

Below is an example of how to initialize the Racetrack environment and solve/compare with multiple solvers.


Boilerplate

If you’re playing with things under the hood as you run these, autoreload is always useful…


[1]:






%load_ext autoreload

%autoreload 2







If necessary, add directory containing lrl to path (workaround for if lrl is not installed as a package)


[2]:






import sys

# Path to directory containing lrl
sys.path.append('../')








[3]:






from lrl import environments, solvers
from lrl.utils import plotting

import matplotlib.pyplot as plt







Logging is used throughout lrl for basic info and debugging.


[4]:






import logging
logging.basicConfig(format='%(asctime)s - %(name)s - %(funcName)s - %(levelname)s - %(message)s',
                    level=logging.INFO, datefmt='%H:%M:%S')
logger = logging.getLogger(__name__)










Initialize an Environment

Initialize the 20x10 racetrack that includes some oily (stochastic) surfaces.

Note: Make sure that your velocity limits suit your track. A track must have a grass padding around the entire course that prevents a car from trying to exit the track entirely, so if max(abs(vel))==3, you need 3 grass tiles around the outside perimeter of your map. For track, we have a 2-tile perimeter so velocity must be less than +-2.


[5]:






# This will raise an error due to x_vel max limit
try:
    rt = environments.get_racetrack(track='20x10_U',
                                     x_vel_limits=(-2, 20),  # Note high x_vel upper limit
                                     y_vel_limits=(-2, 2),
                                     x_accel_limits=(-2, 2),
                                     y_accel_limits=(-2, 2),
                                     max_total_accel=2,
                                     )
except IndexError as e:
    print("Caught the following error while building a track that shouldn't work:")
    print(e)
    print("")

# This will work
try:
    rt = environments.get_racetrack(track='20x10_U',
                                 x_vel_limits=(-2, 2),
                                 y_vel_limits=(-2, 2),
                                 x_accel_limits=(-2, 2),
                                 y_accel_limits=(-2, 2),
                                 max_total_accel=2,
                                 )
    print("But second track built perfectly!")
except:
    print("Something went wrong, we shouldn't be here")













Caught the following error while building a track that shouldn't work:
Caught IndexError while building Racetrack.  Likely cause is a max velocity that is creater than the wall padding around the track (leading to a car that can exit the track entirely)

But second track built perfectly!






Take a look at the track using plot_env


[6]:






plotting.plot_env(env=rt)








[6]:






<matplotlib.axes._subplots.AxesSubplot at 0x1f32321ae48>












[image: _images/example_solution_racetrack_13_1.png]




There are also additional maps available - see the racetrack code base for more


[7]:






print(f'Available tracks: {list(environments.racetrack.TRACKS.keys())}')













Available tracks: ['3x4_basic', '5x4_basic', '10x10', '10x10_basic', '10x10_all_oil', '15x15_basic', '20x20_basic', '20x20_all_oil', '30x30_basic', '20x10_U_all_oil', '20x10_U', '10x10_oil', '20x15_risky']






Tracks are simply lists of strings using a specific set of characters. See the racetrack code for more detail on how to make your own


[8]:






for line in environments.racetrack.TRACKS['20x10_U']:
    print(line)













GGGGGGGGGGGGGGGGGGGG
GGGGGGGGGGGGGGGGGGGG
GGG     OOOO      GG
GGG     GGGG      GG
GGOOOOGGGGGGGGOOOOGG
GGOOOGGGGGGGGGGOOOGG
GG    GGGGGGGG    GG
GG      SGGGGG    GG
GGGGGGGGGGGGGGFFFFGG
GGGGGGGGGGGGGGFFFFGG






We can draw them using character art! For example, here is a custom track with more oil and a different shape than above…


[9]:






custom_track = \
"""GGGGGGGGGGGGGGGGGGGG
GGGGGGGGGGGGGGGGGGGG
GGGOOOOOOOOOOOOOOOGG
GGG     GGGG      GG
GG    GGGGGGGG    GG
GGOOOOOOSGGGGGOOOOGG
GGGGGGGGGGGGGGFFFFGG
GGGGGGGGGGGGGGFFFFGG"""
custom_track = custom_track.split('\n')








[10]:






rt_custom = environments.get_racetrack(track=custom_track,
                                 x_vel_limits=(-2, 2),
                                 y_vel_limits=(-2, 2),
                                 x_accel_limits=(-2, 2),
                                 y_accel_limits=(-2, 2),
                                 max_total_accel=2,
                                 )








[11]:






plotting.plot_env(env=rt_custom)








[11]:






<matplotlib.axes._subplots.AxesSubplot at 0x1f325f99ac8>












[image: _images/example_solution_racetrack_21_1.png]







Solve with Value Iteration and Interrogate Solution


[12]:






rt_vi = solvers.ValueIteration(env=rt)
rt_vi.iterate_to_convergence()













16:33:21 - lrl.solvers.base_solver - iterate_to_convergence - INFO - Solver iterating to convergence (Max delta in value function < 0.001 or iters>500)
16:33:23 - lrl.solvers.base_solver - iterate_to_convergence - INFO - Solver converged to solution in 18 iterations






And we can then score our solution by running it multiple times through the environment


[13]:






scoring_data = rt_vi.score_policy(iters=500)







score_policy returns a EpisodeStatistics object that contains details from each episode taken during the scoring. Easiest way to interact with it is grabbing data as a dataframe


[14]:






print(f'type(scoring_data) = {type(scoring_data)}')
scoring_data_df = scoring_data.to_dataframe(include_episodes=True)
scoring_data_df.head(3)













type(scoring_data) = <class 'lrl.data_stores.data_stores.EpisodeStatistics'>







[14]:








  
    
    Example Case using RewardingFrozenLake
    

    
 
  

    
      
          
            
  


Example Case using RewardingFrozenLake

Below is an example of how to initialize the RewardingFrozenLake environment and solve/compare with multiple solvers.


Boilerplate

If you’re playing with things under the hood as you run these, autoreload is always useful…


[1]:






%load_ext autoreload

%autoreload 2







If necessary, add directory containing lrl to path (workaround for if lrl is not installed as a package)


[2]:






import sys

# Path to directory containing lrl
sys.path.append('../')








[3]:






from lrl import environments, solvers
from lrl.utils import plotting

import matplotlib.pyplot as plt







Logging is used throughout lrl for basic info and debugging.


[4]:






import logging
logging.basicConfig(format='%(asctime)s - %(name)s - %(funcName)s - %(levelname)s - %(message)s',
                    level=logging.INFO, datefmt='%H:%M:%S')
logger = logging.getLogger(__name__)










Initialize an Environment

Initialize an 8x8 Frozen Lake (4x4 and other shapes also available - see code and docs)


[5]:






lake = environments.frozen_lake.RewardingFrozenLakeEnv(map_name='8x8', is_slippery=True)







Take a look at the env using plot_env


[6]:






plotting.plot_env(env=lake)








[6]:






<matplotlib.axes._subplots.AxesSubplot at 0x230f5eb6a90>












[image: _images/example_solution_frozen_lake_13_1.png]




Ice is light blue - holes are dark blue. Make it from green to yellow without hitting any holes!




Solve with Value Iteration and Interrogate Solution

First, with Value Iteration


[7]:






lake_vi = solvers.ValueIteration(env=lake)
lake_vi.iterate_to_convergence()













16:32:22 - lrl.solvers.base_solver - iterate_to_convergence - INFO - Solver iterating to convergence (Max delta in value function < 0.001 or iters>500)
16:32:22 - lrl.solvers.base_solver - iterate_to_convergence - INFO - Solver converged to solution in 32 iterations






And we can then score our solution by running it multiple times through the environment


[8]:






scoring_data = lake_vi.score_policy(iters=500)







score_policy returns a EpisodeStatistics object that contains details from each episode taken during the scoring, plus aggregate scores. Easiest way to interact with it is grabbing data as a dataframe


[9]:






print(f'type(scoring_data) = {type(scoring_data)}')
scoring_data_df = scoring_data.to_dataframe(include_episodes=True)
scoring_data_df.head(3)













type(scoring_data) = <class 'lrl.data_stores.data_stores.EpisodeStatistics'>







[9]:
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API


Solvers


	
class lrl.solvers.PolicyIteration(env, value_function_initial_value=0.0, max_policy_eval_iters_per_improvement=10, policy_evaluation_type='on-policy-iterative', **kwargs)

	Bases: lrl.solvers.base_solver.BaseSolver

Solver for policy iteration

Implemented as per Sutton and Barto’s Reinforcement Learning (http://www.incompleteideas.net/book/RLbook2018.pdf,
page 80).

Notes

See also BaseSolver for additional attributes, members, and arguments (missing here due to Sphinx bug with
inheritance in docs)

Examples

See examples directory


	Parameters

	
	value_function_initial_value (float) – Value to initialize all elements of the value function to


	max_policy_eval_iters_per_improvement – 


	policy_evaluation_type (str) – Type of solution method for calculating policy (see policy_evaluation() for more
details.  Typical usage should not need to change this as it will make
calculations slower and more memory intensive)


	BaseSolver class for additional (See) – 






	Returns

	None






	
value = None

	Space-efficient dict-like storage of the current and all former value functions


	Type

	DictWithHistory










	
iterate()

	Perform a single iteration of policy iteration, updating self.value and storing metadata about the iteration.

Side Effects:


	self.value: Updated to the newest estimate of the value function


	self.policy: Updated to the greedy policy according to the value function estimate


	self.iteration: Increment iteration counter by 1


	self.iteration_data: Add new record to iteration data store





	Returns

	None










	
converged()

	Returns True if solver is converged.

Judge convergence by checking whether the most recent policy iteration resulted in any changes in policy


	Returns

	Convergence status (True=converged)



	Return type

	bool










	
_policy_evaluation(max_iters=None)

	Compute an estimate of the value function for the current policy to within self.tolerance


	Side Effects:
	self.value: Updated to the newest estimate of the value function






	Returns

	None










	
_policy_improvement(return_differences=True)

	Update the policy to be greedy relative to the most recent value function


	Side Effects:
	self.policy: Updated to be greedy relative to self.value






	Parameters

	return_differences – If True, return number of differences between old and new policies



	Returns

	(if return_differences==True) Number of differences between the old and new policies



	Return type

	int










	
init_policy(init_type=None)

	Initialize self.policy, which is a dictionary-like DictWithHistory object for storing current and past policies


	Parameters

	init_type (None, str) – Method used for initializing policy.  Can be any of:


	None: Uses value in self.policy_init_type


	zeros: Initialize policy to all 0’s (first action)


	
	random: Initialize policy to a random action (action indices are random integer from
	[0, len(self.env.P[this_state])], where P is the transition matrix and P[state] is a list
of all actions available in the state)
















	Side Effects:
	If init_type is specified as argument, it is also stored to self.policy_init_type (overwriting previous
value)






	Returns

	None










	
iterate_to_convergence(raise_if_not_converged=None, score_while_training=None)

	Perform self.iterate repeatedly until convergence, optionally scoring the current policy periodically


	Side Effects:
	Many, but depends on the subclass of the solver’s .iterate()






	Parameters

	
	raise_if_not_converged (bool) – If true, will raise an exception if convergence is not reached before hitting
maximum number of iterations.  If None, uses self.raise_if_not_converged


	score_while_training (bool, dict, None) – If None, use self.score_while_training.  Else, accepts inputs of
same format as accepted for score_while_training solver inputs






	Returns

	None










	
run_policy(max_steps=None, initial_state=None)

	Perform a walk (episode) through the environment using the current policy


	Side Effects:
	
	self.env will be reset and optionally then forced into initial_state









	Parameters

	
	max_steps – Maximum number of steps to be taken in the walk (step 0 is taken to be entering initial state)
If None, defaults to self.max_steps_per_episode


	initial_state – State for the environment to be placed in to start the walk (used to force a deterministic
start from anywhere in the environment rather than the typical start position)






	Returns

	tuple containing:


	states (list): boolean indicating if the episode was terminal according to the environment


	rewards (list): list of rewards obtained during the episode (rewards[0] == 0 as step 0 is simply
starting the game)


	is_terminal (bool): Boolean denoting whether the environment returned that the episode terminated
naturally








	Return type

	(tuple)










	
score_policy(iters=500, max_steps=None, initial_state=None)

	Score the current policy by performing iters greedy episodes in the environment and returning statistics


	Side Effects:
	self.env will be reset
more side effects

more side effects






	Parameters

	
	iters – Number of episodes in the environment


	max_steps – Maximum number of steps allowed per episode.  If None, defaults to self.max_steps_per_episode


	initial_state – State for the environment to be placed in to start the episode (used to force a deterministic
start from anywhere in the environment rather than the typical start position)






	Returns

	Object containing statistics about the episodes (rewards, number of steps, etc.)



	Return type

	EpisodeStatistics














	
class lrl.solvers.ValueIteration(env, value_function_initial_value=0.0, **kwargs)

	Bases: lrl.solvers.base_solver.BaseSolver

Solver for value iteration

Implemented as per Sutton and Barto’s Reinforcement Learning (http://www.incompleteideas.net/book/RLbook2018.pdf,
page 82).

Notes

See also BaseSolver for additional attributes, members, and arguments (missing here due to Sphinx bug with
inheritance in docs)

Examples

See examples directory


	Parameters

	
	value_function_initial_value (float) – Value to initialize all elements of the value function to


	BaseSolver class for additional (See) – 






	Returns

	None






	
value = None

	Space-efficient dict-like storage of the current and all former value functions


	Type

	DictWithHistory










	
iterate()

	Perform a single iteration of value iteration, updating self.value and storing metadata about the iteration.

Side Effects:


	self.value: Updated to the newest estimate of the value function


	self.policy: Updated to the greedy policy according to the value function estimate


	self.iteration: Increment iteration counter by 1


	self.iteration_data: Add new record to iteration data store





	Returns

	None










	
converged()

	Returns True if solver is converged.

Test convergence by comparing the latest value function delta_max to the convergence tolerance


	Returns

	Convergence status (True=converged)



	Return type

	bool










	
init_policy(init_type=None)

	Initialize self.policy, which is a dictionary-like DictWithHistory object for storing current and past policies


	Parameters

	init_type (None, str) – Method used for initializing policy.  Can be any of:


	None: Uses value in self.policy_init_type


	zeros: Initialize policy to all 0’s (first action)


	
	random: Initialize policy to a random action (action indices are random integer from
	[0, len(self.env.P[this_state])], where P is the transition matrix and P[state] is a list
of all actions available in the state)
















	Side Effects:
	If init_type is specified as argument, it is also stored to self.policy_init_type (overwriting previous
value)






	Returns

	None










	
iterate_to_convergence(raise_if_not_converged=None, score_while_training=None)

	Perform self.iterate repeatedly until convergence, optionally scoring the current policy periodically


	Side Effects:
	Many, but depends on the subclass of the solver’s .iterate()






	Parameters

	
	raise_if_not_converged (bool) – If true, will raise an exception if convergence is not reached before hitting
maximum number of iterations.  If None, uses self.raise_if_not_converged


	score_while_training (bool, dict, None) – If None, use self.score_while_training.  Else, accepts inputs of
same format as accepted for score_while_training solver inputs






	Returns

	None










	
run_policy(max_steps=None, initial_state=None)

	Perform a walk (episode) through the environment using the current policy


	Side Effects:
	
	self.env will be reset and optionally then forced into initial_state









	Parameters

	
	max_steps – Maximum number of steps to be taken in the walk (step 0 is taken to be entering initial state)
If None, defaults to self.max_steps_per_episode


	initial_state – State for the environment to be placed in to start the walk (used to force a deterministic
start from anywhere in the environment rather than the typical start position)






	Returns

	tuple containing:


	states (list): boolean indicating if the episode was terminal according to the environment


	rewards (list): list of rewards obtained during the episode (rewards[0] == 0 as step 0 is simply
starting the game)


	is_terminal (bool): Boolean denoting whether the environment returned that the episode terminated
naturally








	Return type

	(tuple)










	
score_policy(iters=500, max_steps=None, initial_state=None)

	Score the current policy by performing iters greedy episodes in the environment and returning statistics


	Side Effects:
	self.env will be reset
more side effects

more side effects






	Parameters

	
	iters – Number of episodes in the environment


	max_steps – Maximum number of steps allowed per episode.  If None, defaults to self.max_steps_per_episode


	initial_state – State for the environment to be placed in to start the episode (used to force a deterministic
start from anywhere in the environment rather than the typical start position)






	Returns

	Object containing statistics about the episodes (rewards, number of steps, etc.)



	Return type

	EpisodeStatistics














	
class lrl.solvers.QLearning(env, value_function_tolerance=0.1, alpha=None, epsilon=None, max_iters=2000, min_iters=250, num_episodes_for_convergence=20, **kwargs)

	Bases: lrl.solvers.base_solver.BaseSolver

Solver class for Q-Learning

Notes

See also BaseSolver for additional attributes, members, and arguments (missing due here to Sphinx bug with
inheritance in docs)

Examples

See examples directory


	Parameters

	
	alpha (float, dict) – (OPTIONAL)


	If None, default linear decay schedule applied, decaying from 0.1 at iter 0 to 0.025 at max iter


	If float, interpreted as a constant alpha value


	If dict, interpreted as specifications to a decay function as defined in decay_functions()







	epsilon (float, dict) – (OPTIONAL)


	If None, default linear decay schedule applied, decaying from 0.25 at iter 0 to 0.05 at max iter


	If float, interpreted as a constant epsilon value


	If dict, interpreted as specifications to a decay function as defined in decay_functions()







	num_episodes_for_convergence (int) – Number of consecutive episodes with delta_Q < tolerance to say a solution is
converged


	**kwargs – Other arguments passed to BaseSolver






	Returns

	None






	
transitions = None

	Counter for number of transitions experienced during all learning


	Type

	int










	
q = None

	Space-efficient dict-like storage of the current and all former q functions


	Type

	DictWithHistory










	
iteration_data = None

	Data store for iteration data

Overloads BaseSolver’s iteration_data attribute with one that includes more fields


	Type

	GeneralIterationData










	
episode_statistics = None

	Data store for statistics from training episodes


	Type

	EpisodeStatistics










	
num_episodes_for_convergence = None

	Number of consecutive episodes with delta_Q < tolerance to say a solution is converged


	Type

	int










	
_policy_improvement(states=None)

	Update the policy to be greedy relative to the most recent q function


	Side Effects:
	self.policy: Updated to be greedy relative to self.q






	Parameters

	states – List of states to update.  If None, all states will be updated



	Returns

	None










	
step(count_transition=True)

	Take and learn from a single step in the environment.

Applies the typical Q-Learning approach to learn from the experienced transition


	Parameters

	count_transition (bool) – If True, increment transitions counter self.transitions.  Else, do not.



	Returns

	tuple containing:


	transition (tuple): Tuple of (state, reward, next_state, is_terminal)


	delta_q (float): The (absolute) change in q caused by this step








	Return type

	(tuple)










	
iterate()

	Perform and learn from a single episode in the environment (one walk from start to finish)

Side Effects:


	self.value: Updated to the newest estimate of the value function


	self.policy: Updated to the greedy policy according to the value function estimate


	self.iteration: Increment iteration counter by 1


	self.iteration_data: Add new record to iteration data store


	self.env: Reset and then walked through





	Returns

	None










	
choose_epsilon_greedy_action(state, epsilon=None)

	Return an action chosen by epsilon-greedy scheme based on the current estimate of Q


	Parameters

	
	state (int, tuple) – Descriptor of current state in environment


	epsilon – Optional.  If None, self.epsilon is used






	Returns

	action chosen



	Return type

	int or tuple










	
converged()

	Returns True if solver is converged.


	Returns

	Convergence status (True=converged)



	Return type

	bool










	
get_q_at_state(state)

	Returns a numpy array of q values at the current state in the same order as the standard action indexing
:param state: Descriptor of current state in environment
:type state: int, tuple


	Returns

	Numpy array of q for all actions



	Return type

	np.array










	
init_policy(init_type=None)

	Initialize self.policy, which is a dictionary-like DictWithHistory object for storing current and past policies


	Parameters

	init_type (None, str) – Method used for initializing policy.  Can be any of:


	None: Uses value in self.policy_init_type


	zeros: Initialize policy to all 0’s (first action)


	
	random: Initialize policy to a random action (action indices are random integer from
	[0, len(self.env.P[this_state])], where P is the transition matrix and P[state] is a list
of all actions available in the state)
















	Side Effects:
	If init_type is specified as argument, it is also stored to self.policy_init_type (overwriting previous
value)






	Returns

	None










	
init_q(init_val=0.0)

	Initialize self.q, a dict-like DictWithHistory object for storing the state-action value function q


	Parameters

	init_val (float) – Value to give all states in the initialized q



	Returns

	None










	
iterate_to_convergence(raise_if_not_converged=None, score_while_training=None)

	Perform self.iterate repeatedly until convergence, optionally scoring the current policy periodically


	Side Effects:
	Many, but depends on the subclass of the solver’s .iterate()






	Parameters

	
	raise_if_not_converged (bool) – If true, will raise an exception if convergence is not reached before hitting
maximum number of iterations.  If None, uses self.raise_if_not_converged


	score_while_training (bool, dict, None) – If None, use self.score_while_training.  Else, accepts inputs of
same format as accepted for score_while_training solver inputs






	Returns

	None










	
run_policy(max_steps=None, initial_state=None)

	Perform a walk (episode) through the environment using the current policy


	Side Effects:
	
	self.env will be reset and optionally then forced into initial_state









	Parameters

	
	max_steps – Maximum number of steps to be taken in the walk (step 0 is taken to be entering initial state)
If None, defaults to self.max_steps_per_episode


	initial_state – State for the environment to be placed in to start the walk (used to force a deterministic
start from anywhere in the environment rather than the typical start position)






	Returns

	tuple containing:


	states (list): boolean indicating if the episode was terminal according to the environment


	rewards (list): list of rewards obtained during the episode (rewards[0] == 0 as step 0 is simply
starting the game)


	is_terminal (bool): Boolean denoting whether the environment returned that the episode terminated
naturally








	Return type

	(tuple)










	
score_policy(iters=500, max_steps=None, initial_state=None)

	Score the current policy by performing iters greedy episodes in the environment and returning statistics


	Side Effects:
	self.env will be reset
more side effects

more side effects






	Parameters

	
	iters – Number of episodes in the environment


	max_steps – Maximum number of steps allowed per episode.  If None, defaults to self.max_steps_per_episode


	initial_state – State for the environment to be placed in to start the episode (used to force a deterministic
start from anywhere in the environment rather than the typical start position)






	Returns

	Object containing statistics about the episodes (rewards, number of steps, etc.)



	Return type

	EpisodeStatistics










	
property alpha

	Returns value of alpha at current iteration






	
property epsilon

	Returns value of epsilon at current iteration










	
class lrl.solvers.BaseSolver(env, gamma=0.9, value_function_tolerance=0.001, policy_init_mode='zeros', max_iters=500, min_iters=2, max_steps_per_episode=100, score_while_training=False, raise_if_not_converged=False)

	Bases: object

Base class for solvers

Examples

See examples directory


	Parameters

	
	env – Environment instance, such as from RaceTrack() or RewardingFrozenLake()


	gamma (float) – Discount factor


	value_function_tolerance (float) – Tolerance for convergence of value function during solving (also used for
Q (state-action) value function tolerance


	policy_init_mode (str) – Initialization mode for policy.  See init_policy() for more detail


	max_iters (int) – Maximum number of iterations to solve environment


	min_iters (int) – Minimum number of iterations before checking for solver convergence


	raise_if_not_converged (bool) – If True, will raise exception when environment hits max_iters without
convergence. If False, a warning will be logged.


	max_steps_per_episode (int) – Maximum number of steps allowed per episode (helps when evaluating policies that
can lead to infinite walks)


	score_while_training (dict, bool) – Dict specifying whether the policy should be scored during training (eg:
test how well a policy is doing every N iterations).

If dict, must be of format:


	n_trains_per_eval (int): Number of training iters between evaluations


	n_evals (int): Number of episodes for a given policy evaluation




If True, score with default settings of:


	n_trains_per_eval: 500


	n_evals: 500




If False, do not score during training.








	Returns

	None






	
env = None

	Environment being solved


	Type

	Racetrack, RewardingFrozenLakeEnv










	
policy = None

	Space-efficient dict-like storage of the current and all former policies.


	Type

	DictWithHistory










	
iteration_data = None

	Data describing iteration results during solving of the environment.

Fields include:


	time: time for this iteration


	delta_max: maximum change in value function for this iteration


	policy_changes: number of policy changes this iteration


	converged: boolean denoting if solution is converged after this iteration





	Type

	GeneralIterationData










	
scoring_summary = None

	Summary data from scoring runs computed during training if score_while_training == True

Fields include:


	reward_mean: mean reward obtained during a given scoring run





	Type

	GeneralIterationData










	
scoring_episode_statistics = None

	Detailed scoring data from scoring runs held as a dict of EpisodeStatistics objects.

Data is indexed by iteration number (from scoring_summary)


	Type

	dict, EpisodeStatistics










	
init_policy(init_type=None)

	Initialize self.policy, which is a dictionary-like DictWithHistory object for storing current and past policies


	Parameters

	init_type (None, str) – Method used for initializing policy.  Can be any of:


	None: Uses value in self.policy_init_type


	zeros: Initialize policy to all 0’s (first action)


	
	random: Initialize policy to a random action (action indices are random integer from
	[0, len(self.env.P[this_state])], where P is the transition matrix and P[state] is a list
of all actions available in the state)
















	Side Effects:
	If init_type is specified as argument, it is also stored to self.policy_init_type (overwriting previous
value)






	Returns

	None










	
iterate()

	Perform the a single iteration of the solver.

This may be an iteration through all states in the environment (like in policy iteration) or obtaining and
learning from a single experience (like in Q-Learning)

This method should update self.value and may update self.policy, and also commit iteration statistics to
self.iteration_data.  Unless the subclass implements a custom self.converged, self.iteration_data should include
a boolean entry for “converged”, which is used by the default converged() function.


	Returns

	None










	
iterate_to_convergence(raise_if_not_converged=None, score_while_training=None)

	Perform self.iterate repeatedly until convergence, optionally scoring the current policy periodically


	Side Effects:
	Many, but depends on the subclass of the solver’s .iterate()






	Parameters

	
	raise_if_not_converged (bool) – If true, will raise an exception if convergence is not reached before hitting
maximum number of iterations.  If None, uses self.raise_if_not_converged


	score_while_training (bool, dict, None) – If None, use self.score_while_training.  Else, accepts inputs of
same format as accepted for score_while_training solver inputs






	Returns

	None










	
converged()

	Returns True if solver is converged.

This may be custom for each solver, but as a default it checks whether the most recent iteration_data entry
has converged==True


	Returns

	Convergence status (True=converged)



	Return type

	bool










	
run_policy(max_steps=None, initial_state=None)

	Perform a walk (episode) through the environment using the current policy


	Side Effects:
	
	self.env will be reset and optionally then forced into initial_state









	Parameters

	
	max_steps – Maximum number of steps to be taken in the walk (step 0 is taken to be entering initial state)
If None, defaults to self.max_steps_per_episode


	initial_state – State for the environment to be placed in to start the walk (used to force a deterministic
start from anywhere in the environment rather than the typical start position)






	Returns

	tuple containing:


	states (list): boolean indicating if the episode was terminal according to the environment


	rewards (list): list of rewards obtained during the episode (rewards[0] == 0 as step 0 is simply
starting the game)


	is_terminal (bool): Boolean denoting whether the environment returned that the episode terminated
naturally








	Return type

	(tuple)










	
score_policy(iters=500, max_steps=None, initial_state=None)

	Score the current policy by performing iters greedy episodes in the environment and returning statistics


	Side Effects:
	self.env will be reset
more side effects

more side effects






	Parameters

	
	iters – Number of episodes in the environment


	max_steps – Maximum number of steps allowed per episode.  If None, defaults to self.max_steps_per_episode


	initial_state – State for the environment to be placed in to start the episode (used to force a deterministic
start from anywhere in the environment rather than the typical start position)






	Returns

	Object containing statistics about the episodes (rewards, number of steps, etc.)



	Return type

	EpisodeStatistics














	
class lrl.solvers.BaseSolver(env, gamma=0.9, value_function_tolerance=0.001, policy_init_mode='zeros', max_iters=500, min_iters=2, max_steps_per_episode=100, score_while_training=False, raise_if_not_converged=False)

	Bases: object

Base class for solvers

Examples

See examples directory


	Parameters

	
	env – Environment instance, such as from RaceTrack() or RewardingFrozenLake()


	gamma (float) – Discount factor


	value_function_tolerance (float) – Tolerance for convergence of value function during solving (also used for
Q (state-action) value function tolerance


	policy_init_mode (str) – Initialization mode for policy.  See init_policy() for more detail


	max_iters (int) – Maximum number of iterations to solve environment


	min_iters (int) – Minimum number of iterations before checking for solver convergence


	raise_if_not_converged (bool) – If True, will raise exception when environment hits max_iters without
convergence. If False, a warning will be logged.


	max_steps_per_episode (int) – Maximum number of steps allowed per episode (helps when evaluating policies that
can lead to infinite walks)


	score_while_training (dict, bool) – Dict specifying whether the policy should be scored during training (eg:
test how well a policy is doing every N iterations).

If dict, must be of format:


	n_trains_per_eval (int): Number of training iters between evaluations


	n_evals (int): Number of episodes for a given policy evaluation




If True, score with default settings of:


	n_trains_per_eval: 500


	n_evals: 500




If False, do not score during training.








	Returns

	None






	
env = None

	Environment being solved


	Type

	Racetrack, RewardingFrozenLakeEnv










	
policy = None

	Space-efficient dict-like storage of the current and all former policies.


	Type

	DictWithHistory










	
iteration_data = None

	Data describing iteration results during solving of the environment.

Fields include:


	time: time for this iteration


	delta_max: maximum change in value function for this iteration


	policy_changes: number of policy changes this iteration


	converged: boolean denoting if solution is converged after this iteration





	Type

	GeneralIterationData










	
scoring_summary = None

	Summary data from scoring runs computed during training if score_while_training == True

Fields include:


	reward_mean: mean reward obtained during a given scoring run





	Type

	GeneralIterationData










	
scoring_episode_statistics = None

	Detailed scoring data from scoring runs held as a dict of EpisodeStatistics objects.

Data is indexed by iteration number (from scoring_summary)


	Type

	dict, EpisodeStatistics










	
init_policy(init_type=None)

	Initialize self.policy, which is a dictionary-like DictWithHistory object for storing current and past policies


	Parameters

	init_type (None, str) – Method used for initializing policy.  Can be any of:


	None: Uses value in self.policy_init_type


	zeros: Initialize policy to all 0’s (first action)


	
	random: Initialize policy to a random action (action indices are random integer from
	[0, len(self.env.P[this_state])], where P is the transition matrix and P[state] is a list
of all actions available in the state)
















	Side Effects:
	If init_type is specified as argument, it is also stored to self.policy_init_type (overwriting previous
value)






	Returns

	None










	
iterate()

	Perform the a single iteration of the solver.

This may be an iteration through all states in the environment (like in policy iteration) or obtaining and
learning from a single experience (like in Q-Learning)

This method should update self.value and may update self.policy, and also commit iteration statistics to
self.iteration_data.  Unless the subclass implements a custom self.converged, self.iteration_data should include
a boolean entry for “converged”, which is used by the default converged() function.


	Returns

	None










	
iterate_to_convergence(raise_if_not_converged=None, score_while_training=None)

	Perform self.iterate repeatedly until convergence, optionally scoring the current policy periodically


	Side Effects:
	Many, but depends on the subclass of the solver’s .iterate()






	Parameters

	
	raise_if_not_converged (bool) – If true, will raise an exception if convergence is not reached before hitting
maximum number of iterations.  If None, uses self.raise_if_not_converged


	score_while_training (bool, dict, None) – If None, use self.score_while_training.  Else, accepts inputs of
same format as accepted for score_while_training solver inputs






	Returns

	None










	
converged()

	Returns True if solver is converged.

This may be custom for each solver, but as a default it checks whether the most recent iteration_data entry
has converged==True


	Returns

	Convergence status (True=converged)



	Return type

	bool










	
run_policy(max_steps=None, initial_state=None)

	Perform a walk (episode) through the environment using the current policy


	Side Effects:
	
	self.env will be reset and optionally then forced into initial_state









	Parameters

	
	max_steps – Maximum number of steps to be taken in the walk (step 0 is taken to be entering initial state)
If None, defaults to self.max_steps_per_episode


	initial_state – State for the environment to be placed in to start the walk (used to force a deterministic
start from anywhere in the environment rather than the typical start position)






	Returns

	tuple containing:


	states (list): boolean indicating if the episode was terminal according to the environment


	rewards (list): list of rewards obtained during the episode (rewards[0] == 0 as step 0 is simply
starting the game)


	is_terminal (bool): Boolean denoting whether the environment returned that the episode terminated
naturally








	Return type

	(tuple)










	
score_policy(iters=500, max_steps=None, initial_state=None)

	Score the current policy by performing iters greedy episodes in the environment and returning statistics


	Side Effects:
	self.env will be reset
more side effects

more side effects






	Parameters

	
	iters – Number of episodes in the environment


	max_steps – Maximum number of steps allowed per episode.  If None, defaults to self.max_steps_per_episode


	initial_state – State for the environment to be placed in to start the episode (used to force a deterministic
start from anywhere in the environment rather than the typical start position)






	Returns

	Object containing statistics about the episodes (rewards, number of steps, etc.)



	Return type

	EpisodeStatistics
















Environments


	
class lrl.environments.Racetrack(track=None, x_vel_limits=None, y_vel_limits=None, x_accel_limits=None, y_accel_limits=None, max_total_accel=2)

	Bases: gym.envs.toy_text.discrete.DiscreteEnv

A car-race-like environment that uses location and velocity for state and acceleration for actions, in 2D

Loosely inspired by the Racetrack example of Sutton and Barto’s Reinforcement Learning (Exercise 5.8,
http://www.incompleteideas.net/book/the-book.html)

The objective of this environment is to traverse a racetrack from a start location to any goal location.
Reaching a goal location returns a large reward and terminates the episode, whereas landing on a grass location
returns a large negative reward and terminates the episode.  All non-terminal transitions return a small negative
reward.  Oily road surfaces are non-terminal but also react to an agent’s action stochastically, sometimes causing
an Agent to “slip” whereby their requested action is ignored (interpreted as if a=(0,0)).

The tiles in the environment are:


	(blank): Clean open (deterministic) road


	O: Oily (stochastic) road


	G: (terminal) grass


	S: Starting location (agent starts at a random starting location).  After starting, S tiles behave like open road


	F: Finish location(s) (agent must reach any of these tiles to receive positive reward




The state space of the environment is described by xy location and xy velocity (with maximum velocity being a
user-specified parameter).  For example, s=(3, 5, 1, -1) means the Agent is currently in the x=3, y=5 location
with Vx=1, Vy=-1.

The action space of the environment is xy acceleration (with maximum acceleration being a user-specified parameter).
For example, a=(-2, 1) means ax=-2, ay=-1.  Transitions are determined by the current velocity as well as the
requested acceleration (with a cap set by Vmax of the environment), for example:


	s=(3, 5, 1, -1), a=(-3, 1) –> s_prime=(1, 5, -2, 0)




But if vx_max == +-1 then:


	s=(3, 5, 1, -1), a=(-3, 1) –> s_prime=(2, 5, -1, 0)




Note that sign conventions for location are:


	x: 0 at leftmost column, positive to the right


	y: 0 at bottommost row, positive up





	Parameters

	
	track (list) – List of strings describing the track (see racetrack_tracks.py for examples)


	x_vel_limits (tuple) – (OPTIONAL) Tuple of (min, max) valid acceleration in x.  Default is (-2, 2).


	y_vel_limits (tuple) – (OPTIONAL) Tuple of (min, max) valid acceleration in y.  Default is (-2, 2).


	x_accel_limits (tuple) – (OPTIONAL) Tuple of (min, max) valid acceleration in x.  Default is (-2, 2).


	y_accel_limits (tuple) – (OPTIONAL) Tuple of (min, max) valid acceleration in y.  Default is (-2, 2).


	max_total_accel (int) – (OPTIONAL) Integer maximum total acceleration in one action.  Total acceleration is computed
by abs(x_a)+abs(y_a), representing the sum of change in acceleration in both directions
Default is infinite (eg: any accel described by x and y limits)








Notes

See also discrete.DiscreteEnv for additional attributes, members, and arguments (missing due here to Sphinx bug
with inheritance in docs)

DOCTODO: Add examples


	
track = None

	List of strings describing track or the string name of a default track


	Type

	list, str










	
desc = None

	Numpy character array of the track (better for printing on screen/accessing track at xy locations)


	Type

	np.array










	
color_map = None

	Map from grid tile type to display color


	Type

	dict










	
index_to_state = None

	Attribute to map from state index to full tuple describing state

Ex: index_to_state[state_index] -> state_tuple


	Type

	list










	
state_to_index = None

	Attribute to map from state tuple to state index

Ex: state_to_index[state_tuple] -> state_index


	Type

	dict










	
is_location_terminal = None

	no rewards/transitions leading out of state).

Keyed by state tuple


	Type

	dict



	Type

	Attribute to map whether a state is terminal (eg










	
s = None

	Current state (inherited from parent)


	Type

	int, tuple










	
reset()

	Reset the environment to a random starting location


	Returns

	None










	
render(mode='human', current_location='*')

	Render the environment.


Warning

This method does not follow the prototype of it’s parent.  It is presently a very simple version for
printing the environment’s current state to the screen




	Parameters

	
	mode – (NOT USED)


	current_location – Character to denote the current location






	Returns

	None










	
step(a)

	Take a step in the environment.

This wraps the parent object’s step(), interpreting integer actions as mapped to human-readable actions


	Parameters

	a (tuple, int) – Action to take, either as an integer (0..nA-1) or true action (tuple of (x_accel,y_accel))



	Returns

	Next state, either as a tuple or int depending on type of state used










	
close()

	Override _close in your subclass to perform any necessary cleanup.

Environments will automatically close() themselves when
garbage collected or when the program exits.






	
seed(seed=None)

	Sets the seed for this env’s random number generator(s).


Note

Some environments use multiple pseudorandom number generators.
We want to capture all such seeds used in order to ensure that
there aren’t accidental correlations between multiple generators.




	Returns

	
	Returns the list of seeds used in this env’s random
	number generators. The first value in the list should be the
“main” seed, or the value which a reproducer should pass to
‘seed’. Often, the main seed equals the provided ‘seed’, but
this won’t be true if seed=None, for example.









	Return type

	list<bigint>










	
property unwrapped

	Completely unwrap this env.


	Returns

	The base non-wrapped gym.Env instance



	Return type

	gym.Env
















Experiment Runners


	
lrl.utils.experiment_runners.run_experiment(env, params, output_path)

	Run a single experiment (env/solver combination), outputing results to a given location


	FUTURE: Improve easy reproducibility by outputting a settings file or similar?  Could use gin-config or just output
	params.  Outputting params doesn’t cover env though…






	Parameters

	
	env – An instanced environment object (eg: Racetrack( or RewardingFrozenLake())


	params – A dictionary of solver parameters for this run


	output_path (str) – Path to output data (plots and csvs)








Output to output_path:



	iteration_data.csv: Data about each solver iteration (shows how long each iteration took, how quickly the
solver converged, etc.)


	solver_results*.png: Images of policy (and value for planners).  If environment state is defined by xy
alone, a single image is returned.  Else, an image for each additional state is returned
(eg: for state = (x, y, vx, vy), plots of solver_results_vx_vy.png are returned for each (vx, vy))


	scored_episodes.csv and scored_episodes.png: Detailed data for each episode taken during the final
scoring, and a composite image of those episodes in the environment


	intermediate_scoring_results.csv: Summary data from each evaluation during training (shows history of how
the solver improved over time)


	intermediate_scoring_results_*.png: Composite images of the intermediate scoring results taken during
training, indexed by the iteration at which they were produced


	training_episodes.csv and training_episodes.png: Detailed data for each episode taken during training,
and an composite image of those episodes exploring the environment (only available for an explorational
learner like Q-Learning)








	Returns

	dict containing:


	solver (BaseSolver, ValueIteration, PolicyIteration, QLearner): Fully populated solver object
(after solving env)


	scored_results (EpisodeStatistics): EpisodeStatistics object of results from scoring the final policy


	solve_time (float): Time in seconds used to solve the env (eg: run solver.iterate_to_convergence())








	Return type

	(dict)










	
lrl.utils.experiment_runners.run_experiments(environments, solver_param_grid, output_path='./output/')

	Runs a set of experiments defined by param_grid, writing results to output_path


	Parameters

	
	environments (list) – List of instanced environments


	solver_param_grid (dict) – Solver parameters in suitable form for sklearn.model_selection.ParameterGrid


	output_path (str) – Relative path to which results will be output








Output to output_path:


	For each environment:



	env_name/grid_search_summary.csv: high-level summary of results for this env


	env_name/case_name: Directory with detailed results for each env/case combination See run_experiment for
details on casewise output)












	Returns

	None












Plotting


	
lrl.utils.plotting.plot_solver_convergence(solver, **kwargs)

	Convenience binding to plot convergence statistics for a solver object.

Also useful as a recipe for custom plotting.


	Parameters

	
	solver (BaseSolver (or child)) – Solver object to be plotted


	args (Other) – See plot_solver_convergence_from_df()






	Returns

	Matplotlib axes object



	Return type

	Axes










	
lrl.utils.plotting.plot_solver_convergence_from_df(df, y='delta_max', y_label=None, x='iteration', x_label='Iteration', label=None, ax=None, savefig=None, **kwargs)

	Convenience binding to plot convergence statistics for a set of solver objects.

Also useful as a recipe for custom plotting.


	Parameters

	
	df (pandas.DataFrame) – DataFrame with solver convergence data


	y (str) – Convergence statistic to be plotted (eg: delta_max, delta_mean, time, or policy_changes)


	y_label (str) – Optional label for y_axis (if omitted, will use y as default name unless axis is already labeled)


	x (str) – X axis data (typically ‘iteration’, but could be any convergence data)


	x_label (str) – Optional label for x_axis (if omitted, will use ‘Iteration’)


	label (str) – Optional label for the data set (shows up in axes legend)


	ax (Axes) – Optional Matplotlib Axes object to add this line to


	savefig (str) – Optional filename to save the figure to


	kwargs – Additional args passed to matplotlib’s plot






	Returns

	Matplotlib axes object



	Return type

	Axes










	
lrl.utils.plotting.plot_env(env, ax=None, edgecolor='k', resize_figure=True, savefig=None)

	Plot the map of an environment


	Parameters

	
	env – Environment to plot


	ax (axes) – (Optional) Axes object to plot on


	edgecolor (str) – Color of the edge of each grid square (matplotlib format)


	resize_figure (bool) – If true, resize the figure to:


	width  = 0.5 * n_cols inches


	height = 0.5 * n_rows inches







	savefig (str) – If not None, save the figure to this filename






	Returns

	Matplotlib axes object



	Return type

	Axes










	
lrl.utils.plotting.plot_solver_results(env, solver=None, policy=None, value=None, savefig=None, **kwargs)

	Convenience function to plot results from a solver over the environment map

Input can be using a BaseSolver or child object, or by specifying policy and/or value directly via dict or
DictWithHistory.

See plot_solver_result() for more info on generation of individual plots and additional arguments for
color/precision.


	Parameters

	
	env – Augmented OpenAI Gym-like environment object


	solver (BaseSolver) – Solver object used to solve the environment


	policy (dict, DictWithHistory) – Policy for the environment, keyed by integer state-index or tuples of state


	value (dict, DictWithHistory) – Value function for the environment, keyed by integer state-index or tuples of
state


	savefig (str) – If not None, save figures to this name.  For cases with multiple policies per grid square, this
will be the suffix on the name (eg: for policy at Vx=1, Vy=2, we get name of savefig_1_2.png)


	**kwargs (dict) – Other arguments passed to plot_solver_result






	Returns

	list of Matplotlib Axes for the plots



	Return type

	list










	
lrl.utils.plotting.plot_policy(env, policy, **kwargs)

	Convenience binding for plot_policy_or_value().  See plot_policy_or_value for more detail






	
lrl.utils.plotting.plot_value(env, value, **kwargs)

	Convenience binding for plot_policy_or_value().  See plot_policy_or_value for more detail






	
lrl.utils.plotting.plot_solver_result(env, policy=None, value=None, ax=None, add_env_to_plot=True, hide_terminal_locations=True, color='k', title=None, savefig=None, size_policy='auto', size_value='auto', value_precision=2)

	Plot result for a single xy map using a numpy array of shaped policy and/or value


	Parameters

	
	env (Racetrack, FrozenLake, other environment) – Instantiated environment object


	policy (np.array) – Policy for each grid square in the environment, in the same shape as env.desc
For plotting environments where we have multiple states for a given grid square (eg for
Racetrack), will call plotting for each given additional state (eg: for v=(0, 0), v=(1, 0), ..)


	value – (np.array): Value for each grid square in the environment, in the same shape as env.desc
For plotting environments where we have multiple states for a given grid square (eg for
Racetrack), will call plotting for each given additional state (eg: for v=(0, 0), v=(1, 0), ..)


	ax (Axes) – (OPTIONAL) Matplotlib axes object to plot to


	add_env_to_plot (bool) – If True, add the environment map to the axes before plotting policy using plot_env()


	hide_terminal_locations (bool) – If True, all known terminal locations will have no text printed (as policy here
doesn’t matter)


	color (str) – Matplotlib color string denoting color of the text for policy/value


	title (str) – (Optional) title added to the axes object


	savefig (str) – (Optional) string filename to output the figure to


	size_policy (str, numeric) – (Optional) Specification of text font size for policy printing.  One of:


	’auto’: Will automatically choose a font size based on the number of characters
to be printed


	str or numeric: Interpreted as a Matplotlib style font size designation







	size_value (str, numeric) – (Optional) Specification of text font size for value printing.  Same interface as
size_policy


	value_precision (int) – Precision of value function to be included on figures






	Returns

	Matplotlib Axes object










	
lrl.utils.plotting.plot_episodes(episodes, env=None, add_env_to_plot=True, max_episodes=100, alpha=None, color='k', title=None, ax=None, savefig=None)

	Plot a list of episodes through an environment over a drawing of the environment


	Parameters

	
	episodes (list, EpisodeStatistics) – Series of episodes to be plotted.  If EpisodeStatistics instance, .episodes
will be extracted


	env – Environment traversed


	add_env_to_plot (bool) – If True, use plot_env to plot the environment to the image


	alpha (float) – (Optional) alpha (transparency) used for plotting the episode.
If left as None, a value will be chosen based on the number of episodes to be plotted


	color (str) – Matplotlib-style color designation


	title (str) – (Optional) Title to be added to the axes


	ax (axes) – (Optional) Matplotlib axes object to write the plot to


	savefig (str) – (Optional) string filename to output the figure to


	max_episodes (int) – Maximum number of episodes to add to the plot.  If len(episodes) exceeds this value,
randomly chosen episodes will be used






	Returns

	Matplotlib Axes object with episodes plotted to it










	
lrl.utils.plotting.plot_episode(episode, env=None, add_env_to_plot=True, alpha=None, color='k', title=None, ax=None, savefig=None)

	Plot a single episode (walk) through the environment


	Parameters

	
	episode (list) – List of states encountered in the episode


	env – Environment traversed


	add_env_to_plot (bool) – If True, use plot_env to plot the environment to the image


	alpha (float) – (Optional) alpha (transparency) used for plotting the episode.


	color (str) – Matplotlib-style color designation


	title (str) – (Optional) Title to be added to the axes


	ax (axes) – (Optional) Matplotlib axes object to write the plot to


	savefig (str) – (Optional) string filename to output the figure to






	Returns

	Matplotlib Axes object with a single episode plotted to it










	
lrl.utils.plotting.choose_text_size(n_chars, boxsize=1.0)

	Helper to choose an appropriate text size when plotting policies.  Size is chosen based on length of text

Return is calibrated to something that typically looked nice in testing


	Parameters

	
	n_chars – Text caption to be added to plot


	boxsize (float) – Size of box inside which text should print nicely.  Used as a scaling factor.  Default is 1 inch






	Returns

	Matplotlib-style text size argument










	
lrl.utils.plotting.policy_dict_to_array(env, policy_dict)

	Convert a policy stored as a dictionary into a dictionary of one or more policy numpy arrays shaped like env.desc

Can also be used for a value_dict.

policy_dict is a dictionary relating state to policy at that state in one of several forms.
The dictionary can be keyed by state-index or a tuple of state (eg: (x, y, [other_state]), with x=0 in left
column, y=0 in bottom row). If using tuples of state, state may be more than just x,y location as shown above,
eg: (x, y, v_x, v_y).  If len(state_tuple) > 2, we must plot each additional state separately.

Translate policy_dict into a policy_list_of_tuples of:

[(other_state_0, array_of_policy_at_other_state_0),
 (other_state_1, array_of_policy_at_other_state_1),
  ... ]





where the array_of_policy_at_other_state_* is in the same shape as env.desc (eg: cell [3, 2] of the array is the
policy for the env.desc[3, 2] location in the env).

Examples

If state is described by tuples of (x, y) (where there is a single unique state for each grid location), eg:

policy_dict = {
    (0, 0): policy_0_0,
    (0, 1): policy_0_1,
    (0, 2): policy_0_2,
    ...
    (1, 0): policy_2_1,
    (1, 1): policy_2_1,
    ...
    (xmax, ymax): policy_xmax_ymax,
    }





then a single-element list is returned of the form:

returned = [
  (None, np_array_of_policy),
]





where np_array_of_policy is of the same shape as env.desc (eg: the map), with each element corresponding to the
policy at that grid location (for example, cell [3, 2] of the array is the policy for the env.desc[3, 2]
location in the env).

If state is described by tuples of (x, y, something_else, [more_something_else…]), for example if
state = (x, y, Vx, Vy) like below:

policy_dict = {
    (0, 0, 0, 0): policy_0_0_0_0,
    (0, 0, 1, 0): policy_0_0_1_0,
    (0, 0, 0, 1): policy_0_0_0_1,
    ...
    (1, 0, 0, 0): policy_1_0_0_0,
    (1, 0, 0, 1): policy_1_0_0_1,
    ...
    (xmax, ymax, Vxmax, Vymax): policy_xmax_ymax_Vxmax_Vymax,
    }





then a list is returned of the form:

returned = [
#   (other_state, np_array_of_policies_for_this_other_state)
    ((0, 0), np_array_of_policies_with_Vx-0_Vy-0),
    ((1, 0), np_array_of_policies_with_Vx-0_Vy-0),
    ((0, 1), np_array_of_policies_with_Vx-0_Vy-0),
    ...
    ((Vxmax, Vymax), np_array_of_policies_with_Vxmax_Vymax),
]





where each element corresponds to a different combination of all the non-location state.  This means that each
element of the list is:

(Identification_of_this_case, shaped_xy-grid_of_policies_for_this_case)





and can be easily plotted over the environment’s map.

If policy_dict is keyed by state-index rather than state directly, the same logic as above still applies.

Notes

If using an environment (with policy keyed by either index or state) that has more than one unique state
per grid location (eg: state has more than (x, y)), then environment must also have an index_to_state attribute
to identify overlapping states.  This constraint exists both for policies keyed by index or state, but the code
could be refactored to avoid this limitation for state-keyed policies if required.


	Parameters

	
	env – Augmented OpenAI Gym-like environment object


	policy_dict (dict) – Dictionary of policy for the environment, keyed by integer state-index or tuples of state






	Returns

	list of (description, shaped_policy) elements as described above










	
lrl.utils.plotting.get_ax(ax)

	Returns figure and axes objects associated with an axes, instantiating if input is None








Data Stores


	
class lrl.data_stores.GeneralIterationData(columns=None)

	Bases: object

Class to store data about solver iterations

Data is stored as a list of dictionaries.  This is a placeholder for more advanced storage.  Class gives a minimal
set of extra bindings for convenience.

The present object has no checks to ensure consistency between added records (all have same fields, etc.).  If any
columns are missing from an added record, outputting to a dataframe will result in Pandas treating these as missing
columns from a record.


	Parameters

	columns (list) – An optional list of column names for the data (if specified, this sets the order of the
columns in any output Pandas DataFrame or csv)





DOCTODO: Add example of usage


	
columns = None

	Column names used for data output.

If specified, this sets the order of any columns being output to Pandas DataFrame or csv


	Type

	list










	
data = None

	List of dictionaries representing records.

Intended to be internal in future, but public at present to give easy access to records for slicing


	Type

	list










	
add(d)

	Add a dictionary record to the data structure.


	Parameters

	d (dict) – Dictionary of data to be stored



	Returns

	None










	
get(i=-1)

	Return the ith entry in the data store (index of storage is in order in which data is committed to this object)


	Parameters

	i (int) – Index of data to return (can be any valid list index, including -1 and slices)



	Returns

	ith entry in the data store



	Return type

	dict










	
to_dataframe()

	Returns the data structure as a Pandas DataFrame


	Returns

	Pandas DataFrame of the data



	Return type

	dataframe










	
to_csv(filename, **kwargs)

	Write data structure to a csv via the Pandas DataFrame


	Parameters

	
	filename (str) – Filename or full path to output data to


	kwargs (dict) – Optional arguments to  be passed to DataFrame.to_csv()






	Returns

	None














	
class lrl.data_stores.DictWithHistory(timepoint_mode='explicit', tolerance=1e-07)

	Bases: collections.abc.MutableMapping

Dictionary-like object that maintains a history of all changes, either incrementally or at set timepoints

This object has access like a dictionary, but stores data internally such that the user can later recreate the state
of the data from a past timepoint.

The intended use of this object is to store large objects which are iterated on (such as value or policy functions)
in a way that a history of changes can be reproduced without having to store a new copy of the object every time.
For example, when doing 10000 episodes of Q-Learning in a grid world with 2500 states, we can retain the full
policy history during convergence (eg: answer “what was my policy after episode 527”) without keeping 10000 copies
of a nearly-identical 2500 element numpy array or dict.  The cost for this is some computation, although this
generally has not been seen to be too significant (~10’s of seconds for a large Q-Learning problem in testing)


	Parameters

	
	timepoint_mode (str) – One of:


	explicit (*) – Timepoint incrementing is handled explicitly by the user (the timepoint only changes if the user
invokes .update_timepoint()


	implicit (*) – Timepoint incrementing is automatic and occurs on every setting action, including redundant sets
(setting a key to a value it already holds).  This is useful for a timehistory of all sets to the object


	tolerance (float) – Absolute tolerance to test for when replacing values.  If a value to be set is less than
tolerance different from the current value, the current value is not changed.









Warning


	Deletion of keys is not specifically supported.  Deletion likely works for the most recent timepoint, but the
history does not handle deleted keys properly


	Numeric data may work best due to how new values are compared to existing data, although tuples have also been
tested.  See __setitem__ for more detail






DOCTODO: Add example


	
timepoint_mode = None

	See Parameters for definition


	Type

	str










	
current_timepoint = None

	Timepoint that will be written to next


	Type

	int










	
__getitem__(key)

	Return the most recent value for key


	Returns

	Whatever is contained in ._data[key][-1][-1] (return only the value from the most recent timepoint, not the
timepoint associated with it)










	
__setitem__(key, value)

	Set the value at a key if it is different from the current data stored at key

Data stored here is stored under the self.current_timepoint.

Difference between new and current values is assessed by testing:


	new_value == old_value


	np.isclose(new_value, old_value)




where if neither returns True, the new value is taken to be different from the current value


	Side Effects:
	If timepoint_mode == ‘implicit’, self.current_timepoint will be incremented after setting data






	Parameters

	
	key (immutable) – Key under which data is stored


	value – Value to store at key






	Returns

	None










	
update(d)

	Update this instance with a dictionary of data, d (similar to dict.update())

Keys in d that are present in this object overwrite the previous value.  Keys in d that are missing in this
object are added.

All data written from d is given the same timepoint (even if timepoint_mode=implicit) - the addition is treated
as a single update to the object rather than a series of updates.


	Parameters

	d (dict) – Dictionary of data to be added here



	Returns

	None










	
get_value_history(key)

	Returns a list of tuples of the value at a given key over the entire history of that key


	Parameters

	key (immutable) – Any valid dictionary key



	Returns

	list containing tuples of:


	timepoint (int): Integer timepoint for this value


	value (float): The value of key at the corresponding timepoint








	Return type

	(list)










	
get_value_at_timepoint(key, timepoint=-1)

	Returns the value corresponding to a key at the timepoint that is closest to but not greater than timepoint

Raises a KeyError if key did not exist at timepoint.  Raises an IndexError if no timepoint exists that applies


	Parameters

	
	key (immutable) – Any valid dictionary key


	timepoint (int) – Integer timepoint to return value for.  If negative, it is interpreted like typical python
indexing (-1 means most recent, -2 means second most recent, …)






	Returns

	Value corresponding to key at the timepoint closest to but not over timepoint



	Return type

	numeric










	
to_dict(timepoint=-1)

	Return the state of the data at a given timepoint as a dict


	Parameters

	timepoint (int) – Integer timepoint to return data as of.  If negative, it is interpreted like typical python
indexing (-1 means most recent, -2 means second most recent, …)



	Returns

	Data at timepoint



	Return type

	dict










	
clear() → None.  Remove all items from D.

	




	
get(k[, d]) → D[k] if k in D, else d.  d defaults to None.

	




	
increment_timepoint()

	Increments the timepoint at which the object is currently writing


	Returns

	None










	
items() → a set-like object providing a view on D's items

	




	
keys() → a set-like object providing a view on D's keys

	




	
pop(k[, d]) → v, remove specified key and return the corresponding value.

	If key is not found, d is returned if given, otherwise KeyError is raised.






	
popitem() → (k, v), remove and return some (key, value) pair

	as a 2-tuple; but raise KeyError if D is empty.






	
setdefault(k[, d]) → D.get(k,d), also set D[k]=d if k not in D

	




	
values() → an object providing a view on D's values

	








	
class lrl.data_stores.EpisodeStatistics

	Bases: object

Container for statistics about a set of independent episodes through an environment, typically following one policy

Statistics are lazily computed and memorized

DOCTODO: Add example usage.  show plot_episodes


	
rewards = None

	List of the total reward for each episode (raw data)


	Type

	list










	
episodes = None

	List of all episodes passed to the data object (raw data)


	Type

	list










	
steps = None

	List of the total steps taken for each episode (raw data)


	Type

	list










	
terminals = None

	List of whether each input episode was terminal (raw data)


	Type

	list










	
add(reward, episode, terminal)

	Add an episode to the data store


	Parameters

	
	reward (float) – Total reward from the episode


	episode (list) – List of states encoutered in the episode, including the starting and final state


	terminal (bool) – Boolean indicating if episode was terminal (did environment say episode has ended)






	Returns

	None










	
get_statistic(statistic='reward_mean', index=-1)

	Return a lazily computed and memorized statistic about the rewards from episodes 0 to index

If the statistic has not been previous computed, it will be computed and returned.  See .get_statistics() for
list of statistics available


	Side Effects:
	self.statistics[index] will be computed using self.compute() if it has not been already






	Parameters

	
	statistic (str) – See .compute() for available statistics


	index (int) – Episode index for requested statistic








Notes

Statistics are computed for all episodes up to and including the requested statistic.  For example if
episodes have rewards of [1, 3, 5, 10], get_statistic(‘reward_mean’, index=2) returns 3 (mean of [1, 3, 5]).

DOCTODO: Example usage (show getting some statistics)


	Returns

	Value of the statistic requested



	Return type

	int, float










	
get_statistics(index=-1)

	Return a lazily computed and memorized dictionary of all statistics about episodes 0 to index

If the statistic has not been previous computed, it will be computed here.


	Side Effects:
	self.statistics[index] will be computed using self.compute() if it has not been already






	Parameters

	index (int) – Episode index for requested statistic



	Returns

	Details and statistics about this iteration, with keys:

Details about this iteration:


	episode_index (int): Index of episode


	terminal (bool): Boolean of whether this episode was terminal


	reward (float): This episode’s reward (included to give easy access to per-iteration data)


	steps (int): This episode’s steps (included to give easy access to per-iteration data)




Statistics computed for all episodes up to and including this episode:


	reward_mean (float):


	reward_median (float):


	reward_std (float):


	reward_max (float):


	reward_min (float):


	steps_mean (float):


	steps_median (float):


	steps_std (float):


	steps_max (float):


	steps_min (float):


	terminal_fraction (float):








	Return type

	dict










	
compute(index=-1, force=False)

	Compute and store statistics about rewards and steps for episodes up to and including the indexth episode


	Side Effects:
	self.statistics[index] will be updated






	Parameters

	
	index (int or 'all') – If integer, the index of the episode for which statistics are computed.  Eg: If
index==3, compute the statistics (see get_statistics() for list) for the series of episodes from
0 up to and not including 3 (typical python indexing rules)
If ‘all’, compute statistics for all indices, skipping any that have been previously
computed unless force == True


	force (bool) – If True, always recompute statistics even if they already exist.

If False, only compute if no previous statistics exist.








	Returns

	None










	
to_dataframe(include_episodes=False)

	Return a Pandas DataFrame of the episode statistics

See .get_statistics() for a definition of each column.  Order of columns is set through self.statistics_columns


	Parameters

	include_episodes (bool) – If True, add column including the entire episode for each iteration



	Returns

	Pandas DataFrame










	
to_csv(filename, **kwargs)

	Write statistics to csv via the Pandas DataFrame

See .get_statistics() for a definition of each column.  Order of columns is set through self.statistics_columns


	Parameters

	
	filename (str) – Filename or full path to output data to


	kwargs (dict) – Optional arguments to be passed to DataFrame.to_csv()






	Returns

	None
















Miscellaneous Utilities


	
class lrl.utils.misc.Timer

	Bases: object

A Simple Timer class for timing code


	
start = None

	timeit.default_timer object initialized at instantiation






	
elapsed()

	Return the time elapsed since this object was instantiated, in seconds


	Returns

	Time elapsed in seconds



	Return type

	float














	
lrl.utils.misc.print_dict_by_row(d, fmt='{key:20s}: {val:d}')

	Print a dictionary with a little extra structure, printing a different key/value to each line.


	Parameters

	
	d (dict) – Dictionary to be printed


	fmt (str) – Format string to be used for printing.  Must contain key and val formatting references






	Returns

	None










	
lrl.utils.misc.count_dict_differences(d1, d2, keys=None, raise_on_missing_key=True, print_differences=False)

	Return the number of differences between two dictionaries.  Useful to compare two policies stored as dictionaries.

Does not properly handle floats that are approximately equal.  Mainly use for int and objects with __eq__

Optionally raise an error on missing keys (otherwise missing keys are counted as differences)


	Parameters

	
	d1 (dict) – Dictionary to compare


	d2 (dict) – Dictionary to compare


	keys (list) – Optional list of keys to consider for differences.  If None, all keys will be considered


	raise_on_missing_key (bool) – If true, raise KeyError on any keys not shared by both dictionaries


	print_differences (bool) – If true, print all differences to screen






	Returns

	Number of differences between the two dictionaries



	Return type

	int










	
lrl.utils.misc.dict_differences(d1, d2)

	Return the maximum and mean of the absolute difference between all elements of two dictionaries of numbers


	Parameters

	
	d1 (dict) – Dictionary to compare


	d2 (dict) – Dictionary to compare






	Returns

	tuple containing:


	float: Maximum elementwise difference


	float: Sum of elementwise differences








	Return type

	tuple










	
lrl.utils.misc.rc_to_xy(row, col, rows)

	Convert from (row, col) coordinates (eg: numpy array) to (x, y) coordinates (bottom left = 0,0)

(x, y) convention


	(0,0) in bottom left


	x +ve to the right


	y +ve up




(row,col) convention:


	(0,0) in top left


	row +ve down


	col +ve to the right





	Parameters

	
	row (int) – row coordinate to be converted


	col (int) – col coordinate to be converted


	rows (int) – Total number of rows






	Returns

	(x, y)



	Return type

	tuple










	
lrl.utils.misc.params_to_name(params, n_chars=4, sep='_', first_fields=None, key_remap=None)

	Convert a mappable of parameters into a string for easy test naming


Warning

Currently includes hard-coded formatting that interprets keys named ‘alpha’ or ‘epsilon’




	Parameters

	
	params (dict) – Dictionary to convert to a string


	n_chars (int) – Number of characters per key to add to string.
Eg: if key=’abcdefg’ and n_chars=4, output will be ‘abcd’


	sep (str) – Separator character between fields (uses one of these between key and value, and two between
different key-value pairs


	first_fields (list) – Optional list of keys to write ahead of other keys (otherwise, output order it sorted)


	key_remap (list) – List of dictionaries of {key_name: new_key_name} for rewriting keys into more readable strings






	Returns

	



	Return type

	str
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